Article:

Impact Factor: 11.020

Summary:

Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), the leading cause of death due to a single infectious agent, claiming 1.7 million lives in 2016. Of the deaths attributable to TB in 2016, 22% occurred in people coinfected with HIV, and close to 5% of the 10.4 million incident cases of this disease were resistant to at least two of the first-line TB drugs. In this infographic, we describe the fundamental features of the genetics, phylogeny, and physiology of this member of the phylum Actinobacteria, which is associated increasingly with drug resistance mediated by mutations and rearrangements in its single, circular chromosome. We also highlight the key pathogenesis mechanisms employed by this slow-growing, facultative intracellular bacterium, which include avoidance of host cell clearance by arrest of the normal macrophage maturation process.
Summary:
The concentration and fates of six priority phthalate esters (PAEs); dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di(2-ethyl hexyl) phthalate (DEHP), and di-n-octyl phthalate (DOP) in wastewaters from the wastewater treatment plants (WWTPs) which adopted the activated sludge technology in the Amathole Municipality, Eastern Cape, South Africa were investigated. The six PAEs were detected in all the influents and in almost all the WWTP effluent of which DBP was the most abundant in the influent followed by DEHP. Influent concentration of DBP in the three WWTPs ranged between 2.7 and 2488 μgL−1 and the average effluent concentration was 4.90–8.88 μgL−1. On average, the concentration of PAEs in WWTP effluents were higher than PAEs in the upstream and downstream of the discharging point suggesting PAE impact on the receiving water. The concentrations detected in the sludge of which DEHP and DBP were more pervasive ranged between 130 and 1094 μg/g dry weight. The average removal capacity; 27.3–99.5% suggested more adsorption on settling particles and sludge than biodegradation as high significant correlation was found between PAEs removal, total suspended solid and turbidity. Removal of high molecular weight and high octanol-water partition coefficient (logKow) PAEs through adsorption was found to be significantly high. It could be concluded that the release of PAEs into the sludge, and the amount in the final effluent which were found to exceed the acceptable levels allowed internationally, raises safety concern for both aquatic and human's health.
Article:
DOI: 10.1016/j.diabres.2018.03.012
Impact Factor: 3.639

Summary:
Aims: This study aimed to determine the prevalence of Gestational Diabetes Mellitus (GDM) amongst black South African women, describe GDM-associated risk factors and clinical management, and evaluate the efficacy of the fasting plasma glucose reading in diagnosing GDM.

Methods: A cross-sectional screening study was performed. Pregnant women were recruited from the Chris Hani Baragwanath Academic Hospital in Johannesburg. A total of 1906 women underwent a two-hour 75 g oral glucose tolerance test at 24-28 weeks gestation. The World Health Organization's 2013 criteria were used to diagnose GDM.

Results: A total of 174/1906 (9.1% (95% confidence interval (CI) 7.9, 10.5)) women were diagnosed with GDM. These women had significantly higher weights and body mass indexes (BMIs), were significantly older, of higher household socioeconomic status, more likely to report a family history of diabetes, and more likely to be diagnosed with anaemia than women without GDM. An age of ≥35 years, BMI ≥ 30 kg/m², and a family history of diabetes were significant risk factors. The fasting plasma glucose reading had a high sensitivity (83.3% (95% CI 77.0, 88.5)) in diagnosing GDM and 56.9% of the women with GDM were managed by diet therapy alone.

Conclusion: This is the largest GDM prevalence study in South Africa to date. A diagnosis of GDM increases the risk of both mother and child developing Type 2 diabetes which causes further health complications, decreases longevity, and burdens a country's healthcare system. Therefore, a GDM prevalence of 9.1% is concerning and warrants further discussion around current GDM screening policies.
Article:

DOI: 10.1111/tbed.12856
Impact Factor: 3.585

Summary

Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), has been reported in many species including suids. Wild boar are important maintenance hosts of the infection with other suids, that is domestic and feral pigs, being important spillover hosts in the Eurasian ecosystem and in South Africa, warthogs (Phacochoerus africanus) may play a similar role in M. bovis-endemic areas. However, novel diagnostic tests for warthogs are required to investigate the epidemiology of bTB in this species. Recent studies have demonstrated that serological assays are capable of discriminating between M. bovis-infected and uninfected warthogs (Roos et al.). In this study, an indirect ELISA utilizing M. bovis purified protein derivative (PPD) as a test antigen was used to measure the prevalence and investigate risk factors associated with infection in warthogs from uMhkuze Nature Reserve and the southern region of the Greater Kruger National Park (GKNP). There was a high overall seroprevalence of 38%, with adult warthogs having a higher risk of infection (46%). Seroprevalence also varied by geographic location with warthogs from Marloth Park in the GKNP having the greatest percentage of positive animals (63%). This study indicates that warthogs in M. bovis-endemic areas are at high risk of becoming infected with mycobacteria. Warthogs might present an under-recognized disease threat in multi-species systems. They might also serve as convenient sentinels for M. bovis in endemic areas. These findings highlight the importance of epidemiological studies in wildlife to understand the role each species plays in disease ecology.
Summary

Background: Typically, women in South Africa (SA) are diagnosed with breast cancer when they self-present with symptoms to health facilities. The aim of this study was to determine the pathway that women follow to breast cancer care and factors associated with this journey.

Methods: A cross-sectional study was conducted at a tertiary hospital in the Western Cape Province, SA, between May 2015 and May 2016. Newly diagnosed breast cancer patients were interviewed to determine their socio-demographic profile; knowledge of risk factors, signs and symptoms; appraisal of breast changes; clinical profile and; key time events in the journey to care. The Model of Pathways to Treatment Framework underpinned the analysis. The Total Time (TT) between a woman noticing the first breast change and the date of scheduled treatment was divided into 3 intervals: the Patient Interval (PI); the Diagnostic Interval (DI) and the Pre-Treatment Interval (PTI). For the PI, DI and PTI a bivariate comparison of median time intervals by various characteristics was conducted using Wilcoxon rank-sum and Kruskal-Wallis tests. Cox Proportional-Hazards models were used to identify factors independently associated with the PI, DI and PTI.

Results: The median age of the 201 participants was 54 years, and 22% presented with late stage disease. The median TT was 110 days, with median patient, diagnostic and pre-treatment intervals of 23, 28 and 37 days respectively. Factors associated with the PI were: older age (Hazard ratio (HR) 0.59, 95% CI 0.40-0.86), initial symptom denial (HR 0.43, 95% CI 0.19-0.97) and waiting for a lump to increase in size before seeking care (HR 0.51, 95% CI 0.33-0.77). Women with co-morbidities had a significantly longer DI (HR 0.67, 95% CI 0.47-0.96) as did women who mentioned denial of initial breast symptoms (HR 4.61, 95% CI 1.80-11.78). The PTI was associated with late stage disease at presentation (HR 1.78, 95% CI 1.15-2.76).

Conclusion: The Model of Pathways to Treatment provides a useful framework to explore patient's journeys to care and identified opportunities for targeted interventions.
1. **INTRAMURAL RESEARCH UNITS**

Alcohol, Tobacco and Other Drug

Impact Factor: 1.969

Impact Factor: 2.500

DOI: 10.1186/s13011-018-0149-2

Impact Factor: 1.811

DOI: 10.1111/dar.12693

Impact Factor: 2.822

DOI: 10.1016/s2215-0366(18)30060-9

Impact Factor: 11.588

Biomedical Research and Innovation Platform

DOI: 10.1007/s40291-018-0325-0

Impact Factor: 1.909

DOI: 10.1111/jpi.12490

Impact Factor: 10.391

DOI: 10.1016/j.acthis.2018.03.006

Impact Factor: 1.360
Centre for Tuberculosis

 DOI: 10.1111/tbed.12856
 Impact Factor: 3.585

 DOI: 10.7171/jbt.18-2901-003
 Impact Factor: None

 DOI:10.3389/fgene.2018.00053
 Impact Factor: 3.789

 DOI: 10.4049/jimmunol.1701780
 Impact Factor: 4.856

Environment and Health

 DOI: 10.3390/ijerph15030502
 Impact Factor: 2.101

 DOI: 10.3390/atmos9040124
 Impact Factor: 1.487

 DOI: 10.1186/s12913-018-3006-0
 Impact Factor: 1.827

Gender and Health

 DOI: 10.1080/17441692.2018.1449231
 Impact Factor: 1.614
Impact Factor: 2.806

Impact Factor: 2.265

Health Systems

Impact Factor: 1.969

Impact Factor: 1.969

Impact Factor: 1.731

Impact Factor: 2.369

Non-Communicable Disease

Impact Factor: 3.057

Impact Factor: 2.342
Impact Factor: 1.784

Impact Factor: 7.738

Office of AIDS

Impact Factor: 1.731

Impact Factor: 19.287

Impact Factor: 2.916

South African Cochrane Centre

Impact Factor: 2.806

Impact Factor: 1.827

Impact Factor: 2.369

Impact Factor: 2.271

Impact Factor: 2.673
2. **EXTRAMURAL RESEARCH UNITS**

Bioinformatics Capacity Development

 Impact Factor: 4.259

 Impact Factor: None

Child and Adolescent Lung Health

 Impact Factor: 1.093

Common Epithelial Cancer

 Impact Factor: None

Developmental Pathways for Health

 Impact Factor: None

 Impact Factor: 1.788

 Impact Factor: None

 Impact Factor: 1.240
 Impact Factor: 3.639

 Impact Factor: 2.541

 DOI: 10.3389/fpubh.2018.00073
 Impact Factor: None

Drug Discovery and Development
 DOI: 10.1021/acsinfecdis.7b00275
 Impact Factor: 3.600

Gynaecological Cancer
 DOI: 10.1186/s12885-018-4219-7
 Impact Factor: 3.288

Health Services to Systems
 DOI: 10.4102/curationis.v41i1.1815
 Impact Factor: None

 DOI:10.7196/SAMJ.2018.v108i4.12755
 Impact Factor: 1.731

HIV/TB Pathogenesis and Treatment
 DOI: 10.5588/pha.17.0114
 Impact Factor: None
Immunology of Infectious Disease

 DOI: 10.7554/eLife.35074
 Impact Factor: 7.725

Maternal and Infant Health Care Strategies

 Impact Factor: 1.731

 Impact Factor: 1.731

 DOI: 10.1002/ijgo.12477
 Impact Factor: 2.174

 DOI: 10.1186/S12978-018-0485-8
 Impact Factor: 2.209

 DOI: 10.1177/1753495X17745727
 Impact Factor: None

Microbial Water Quality Monitoring

 DOI: 10.3390/molecules23040795
 Impact Factor: 2.861

 DOI: 10.1016/j.chemosphere.2018.03.176
 Impact Factor: 4.208
Molecular Mycobacteriology

 DOI: 10.1021/acs.jmedchem.7b01622
 Impact Factor: 6.259

 DOI: 10.1016/j.tim.2018.02.012
 Impact Factor: 11.020

Respiratory and Meningeal Pathogens

 DOI: 10.1016/j.vaccine.2018.02.013
 Impact Factor: 3.235

Risk and Resilience in Mental Disorders

 DOI: 10.1186/s12888-017-1583-9
 Impact Factor: 2.613

Rural Public Health and Health Transition

 DOI: 10.1186/s12982-018-0073-y
 Impact Factor: None

Stem Cell Research and Therapy

 DOI: 10.1080/09537104.2018.1445840
 Impact Factor: 2.465
3. **GRANT FUNDED RESEARCH**

 Impact Factor: None

 DOI: 10.3389/fimmu.2018.00324

 Impact Factor: 6.429

 DOI: 10.1016/j.ijcard.2017.12.048

 Impact Factor: 6.189

 DOI: 10.4102/sajr.v22i1.1285

 Impact Factor: None

 DOI: 10.1136/emermed-2017-207062

 Impact Factor: 1.861
4. **RESEARCH CENTRES**

Advancing Care and Treatment (ACT) For TB/HIV

 DOI: 10.1371/journal.pone.0192089

 Impact Factor: 2.806

Tygerberg SAMRC Collaborating centre for HIV Laboratory Research

 DOI: 10.1097/qad.0000000000001739

 Impact Factor: 5.019

UP Centre for Sustainable Malaria Control

 DOI: 10.1186/s12936-018-2271-z

 Impact Factor: 2.715
5. RESEARCH UNITS WITH NO QUALIFYING PUBLICATIONS

Intramural

- Biostatistics
- Burden of Disease
- HIV Prevention
- Office of Cancer
- Office of Malaria
- Office of Tuberculosis
- Primate
- Violence, Injury and Peace

Extramural

- Antiviral Gene Therapy
- Diarrhoeal Pathogens
- Herbal Drugs
- Human Genetics
- Hypertension and Cardiovascular Disease
- Medical Imaging
- Prospective Gastrointestinal Cancer
- Receptor Biology

Research Centre

- Centre for Basic and Translational Human TB Research
- Centre for Tuberculosis Biomarker-Targeted Intervention
- Clinical and Community HIV-Tuberculosis Research Collaborating Centre
- Soweto Matlosana SAMRC Collaborating Centre for HIV/AIDS and TB
- TB Free through Research and Innovation
- Tuberculosis Collaborating Centre for Child Health (TB-CHILD)
- UCT Collaborating Centre for Optimising Antimalarial Therapy in South Africa
- Wits Clinical HIV/TB Research Unit, WITS Health Consortium
- Wits Collaborating Centre for Multi-Disciplinary Research on Malaria
- Wits RHI Collaborating Centre for HIV/AIDS
6. **GRANTS AWARDED**

<table>
<thead>
<tr>
<th>SAMRC Unit</th>
<th>Funder</th>
<th>Main Funder</th>
<th>Project Title/Description</th>
<th>Contract Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIPD</td>
<td>DST</td>
<td>DST</td>
<td>2nd Addendum to Agreement SAMRC,SHIP/DST</td>
<td>Rand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Foreign Currency</td>
</tr>
<tr>
<td>HPRU</td>
<td>Fred Hutchinson</td>
<td>Bill & Melinda Gates Foundation</td>
<td>HIV Vaccine Trials Network Protocol Funding</td>
<td>Rand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Foreign Currency</td>
</tr>
<tr>
<td></td>
<td>Family Health International</td>
<td></td>
<td>HPTN 084/SAMRC Botha’s Hill/Isipingo and Verulam ‘‘A Phase 3 Double Blind Safety and Efficacy Study of Long Acting Injectable Cabotegravir Compared to Daily Oral TDF/FTC for Pre-Exposure Prophylaxis in HIV-Uninfected Women</td>
<td>Rand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Foreign Currency</td>
</tr>
</tbody>
</table>